

COSMOLOGY & DARK MATTER

Part II

Viktor Zacek, Université de Montréal

TRIUMF July 2013

Lecture II

- Observations
- Redshift and scale factor
- Distance measurements
- SN1a and the accelerating Universe
- The Cosmic Microwave Background
- Present knowledge of the content of the Universe
- Evidence for dark matter

Hubble space telescope

REDSHIFT & SCALE FACTOR

- Scale factor *a*(*t*) is related to the redshift !
 - Measurements involve redshifts and radiant fluxes of distant objects

Wavelength of a receding object is stretched out...

Sretching factor: $z = \frac{\lambda_o - \lambda_e}{\lambda} = \frac{\lambda_o}{\lambda} - 1$

$$1 + z = \frac{\lambda_o}{\lambda_e} = \frac{a(t_0)}{a(t_e)}$$

time of observation

time of emission

 $1 + z = \left(1 + \frac{v}{c}\right)\gamma \rightarrow z \approx \frac{v}{c}$ ($v \ll c$) $\gamma = \text{Lorentz factor}$

U. at redshift $z \rightarrow U$. of size 1/(1+z) with respect to today

REDSHIFT & SCALE FACTOR

50 objects with z > 8 Protogalaxies, GRB, quasars

Record: z = 11.9 !

CMB: Cosmic Microwave Background radiation

z = 1089!

U. by factor 1000 smaller than today!

LUMINOSITY DISTANCE

- Cosmological distances are measured with Standard Candles
- Standard Candles are sources of known size or luminosity (rad.power)
- E.g. Cepheid stars (< 10 Mpc), SN1a. (50 800 Mpc)
- Luminosity distance connects observed energy flux to luminosity of SC

Nearby object:

Far away in an expanding U:

- All photons redshifted by (1+z)
- Time btw. photons increased by (1+z)

d

F: energy flux L: luminosity d: distance

$$= \frac{L}{4\pi d_{eff}^2} \frac{1}{(1+z)^2} = \frac{L}{4\pi d_L^2}$$

d_{eff} : co-moving distance

$$d_{L} = \frac{c}{H_{0}} \left[z + \frac{1}{2} (1 - q_{0}) z^{2} + \cdots \right]$$

Luminosity distance

a measure of cosmological parameters!

SUPERNOAVAE TYPE 1A

Motivation: If we could find Standard Candles with 10% precision at $z \sim 0.5$ we could distinguish betw. models dominated by Ω_m or Ω_Λ

- SN1a can be observed up to $z \sim 1$ (800 Mpc)
- $L_{\rm SN} \sim L_{\rm G}!$
- SN1a are binary star system with a white dwarf.
- Accretion up to mass limit of 1.38 M_{\odot}
- Merger starts run-away fusion from C up to Fe
- Peak Lumi correlated w. decay time: 10% precison in L_{SN}

A technical detail (of ancient greek origin) :Weber-Fechner: $m_1 - m_2 = -2.5log\left(\frac{L1}{L2}\right)$ Cosmology: $m - M = 5log(d_L) + 5$

 $\left(\frac{1}{2}\right) m_{1,2}$: apparent "brightness" at $L_{1,2}$

...with Stand. Candle at 1 Mpc

a for all the

app. abs. magnitude

App. Magnitude of sun : - 26.7

... the fainter the object the larger m-M

SUPERNOAVAE TYPE 1A

•

- Near SN at known distances
- Abs. magnitude related to decay time

Correct M by "stretching factor"

Same abs. magnitude M after correction

Far SN: get redshift from host galaxy

PHYSICS NOBEL PRIZE 2011

"for the discovery of the accelerating expansion of the Universe through observations of distant supernovae"

"dark energy [...] is an enigma, perhaps the greatest in physics today"

S.Perlmutter B. Schmidt A.Riess

- Ridiculous small value: $\Lambda \sim 1.3 \times 10^{-52} \text{ m}^2$
- $\Lambda = 0$ more natural
- .. or ridiculously much larger ?
- important at beginning of U. and in future

QFT prediction : $\rho_{vac} \sim 10^{92} \text{ gcm}^{-3}$ From Λ observed: $\rho_{vac} \sim 10^{-31} \text{ gcm}^{-3}$

Factor 10¹²³ off !

Cosmological constant problem

Dark energy

Dark Matter

A COSMIC COINCIDENCE ? $\Omega_{tot} = \Omega_m + \Omega_r + \Omega_\Lambda = \mathbf{1}$

Do we live in a special time?

$\Omega_{\Lambda} \sim \Omega_m$ just now??

S. Weinberg:

- $\Lambda \sim 10^{120}$ x smaller than predicted by particle physics!
- $\Lambda \sim 10 \text{ x}$ larger than todays value \rightarrow catastrophic inflation!
- Other regions, other U. in a Multiverse with different $\Omega_{\rm I}$ and fundamental constants?
- Anthropic principle?

THE THERMAL HISTORY OF THE UNIVERSE

Density of black body radiation (Stefan-Boltzmann) :

 $\rho_r \propto T^4$

 $\rho_r(t) = \rho_r(t_0) \left(\frac{a(t_0)}{a(t)}\right)^4$

 $a(t_0)=1$ $\rho_r(t) = \frac{\rho_r(t_0)}{a(t)^4} \propto t^{-2}$

 $T(t) = \frac{T(t_0)}{a(t)} \propto t^{-1/2}$

Hot history of

the Universe!

THERMODYNAMICS OF THE UNIVERSE

....is a simple* description possible? Yes, if ...

- there is thermodynamic equilibrium \rightarrow very frequent collisions
- evolution of U \rightarrow sequence of equilibrium states T(t), p(t), $\rho(t)$, S(t)

adiabaticity

- Local energy conservation in co-moving volume S = const.
- Interaction rate of constituents $\Gamma = n \cdot \sigma \cdot v$ (*n* # density)

Thermal equilibrium when $\Gamma >> H$ (int. rate larger than expansion)

* S. Weinberg: (in therm. equilibrium) "the U. is simpler and easier to describe than it ever will be"

THERMODYNAMICS OF THE UNIVERSE

Thermal equilibrium when $\Gamma >> H$ (rate larger than expansion)

- ...typically $\Gamma(t)$ decreases faster than H(t)
 - particles will leave equilibrium... are "frozen out"
 - "frozen out" particles are the dominant matter content of U now

....and then we have phase transitions!

- Phase transitions happen
 - when $T(eV/c^2) < mass of particles$
 - when $T(eV/c^2) < binding energy$ (latent heat)

1 eV ≈10⁴ K

THE 2.7K COSMIC MICROWAVE RADIATION (CMB)

1965 accidental discovery by A. Penzias & R.Wilson (1978 NP)

Perfect and isotropic black body spectrum of 2.725±0.001 K

$$\epsilon(f)df = \frac{8\pi h}{c^3} \frac{f^3 df}{exp(hf/k_B T - 1)}$$

Energy density

Preservation of bb-spectrum if f & T scale with (1+z);

Explains low temperature today \rightarrow matter & radiation @ 2K are not in equilibrium!

Earlier U. very much hotter \rightarrow thermal equilibrium of matter & radiation

CMB is a "relic radiation" which you could see as noise at home on a CTR TV!!!

U. Is expanding! First proof of hot BB-theory ...a revolution in cosmology

THE ANISOTROPY OF THE COSMIC MW BACKGROUND

Image of early Universe imprinted on temp. anisotropy of CMB

- 300 ky after BB photons decouple from matter $T \approx 6000 \text{ K}$
- before decoupling: plasma oscill./ of photon-baryon "liquid" \rightarrow sound waves
- CMB: snap shot of sound waves when rad. decoupled
- Today light red shifted by $1/1000 \rightarrow 2.7 \text{ K}$
- Smallness of $\Delta T/T \rightarrow$ visible Universe once causally connected \rightarrow Inflation!
- Image of quantum fluctuation at 10¹⁹ GeV

GEOMETRY OF THE UNIVERSE

FLAT

CLOSED

Angular diameter of the moon

Expansion in spherical harmonics of CMB temp. field

Multipole development \Leftrightarrow angular • / number of cycles in the sky • $\theta = \pi / I$ • $I_{\text{peak}} = 200 / \sqrt{\Omega_{\text{tot}}}$ • $I_{\text{peak}} = 197 \pm 6 (0.9^{\circ})$

Curvature of Universe: Ω_{tot}

"Cosmic variance" (only one Universe)

Baryon density small: Ω_{b}

BIG BANG NUCLEOSYNTHESIS

- Corner stone of BB cosmology \rightarrow rel. abundance of ²D, ⁴He, ³He, ⁷Li
- *n*, *p* in thermal equil. e.g. : $n + v_e \leftrightarrow p + e^-$ until T < 0.8 MeV (1 sec)
- Later expansion rate > interaction rate $\Gamma_{np} < H$

$$\frac{N_n}{N_p} \propto exp\left(-\frac{m_n - m_p}{k_B T}\right) \propto exp\left(-\frac{1.3MeV}{0.8MeV}\right) = \frac{1}{5}$$

(Maxwell-Boltzmann)

 $p + n \rightarrow {}^{2}D + \gamma$ ${}^{2}D + p \rightarrow {}^{3}He + \gamma$ ${}^{3}He + {}^{2}D \rightarrow {}^{4}He + p$ ${}^{2}D + {}^{2}D \rightarrow {}^{3}T + p$ ${}^{3}T + {}^{4}He \rightarrow {}^{7}Li + \gamma$

- But 10⁹ γ /p and important high energy tail in γ distribution
- Nuclei broken apart again by photo-fission until T = 0.06 MeV (314 sec)
- ...in the meantime neutrons decay with $\tau = 824$ sec

314 sec

1 sec

$$\frac{N_n}{N_p}(314s) = \frac{1}{5}exp\left(-\frac{314s}{884s}\right) = \frac{1}{7,3}$$

Since all neutrons end up in ⁴He:

$$Y_{He} = \frac{4 \cdot N_n/2}{N_n + N_p} = 0.24$$

rel. abundance

Ω_{B} FROM BIG BANG NUCLEOSYNTHESIS

⁴*H*e ²*D*, ³*H*e, ⁷Li (0.24, ~10⁻⁴, 10⁻⁵, 10⁻¹⁰)

- no nuclei with A =5, 8 end of BBN
- heavier nuclei in stars @ t > 10 My

THE MATTER - ANTIMATTER ASYMMETRY

Suppose:

- U. started with equal abundance $e^+, e^-, q, \overline{q} \dots \rightarrow C$ & CP symmetry.
- $q, \overline{q} \rightarrow p \ \overline{p}$, in perfect sym. equal amount
- at some point U too cold for $p\bar{p} \iff 2E_{\gamma}$ ($E_{\gamma} < m_{p}$...due to expansion)

 $p + \bar{p} \rightarrow \gamma + \gamma$ $p \ \bar{p}$ depleted

Later..

 $e^+ + e^- \rightarrow \gamma + \gamma$ $e^+ e^-$ depleted

Only γ 's remain!

... unless at some moment excess of protons!

Another unsolved question: where did the entropy at the beginning come from?

BARYO -/ LEPTO - GENESIS

U expands adiabatically \rightarrow net # of particles constant \rightarrow S constant

Today: $10^{9-10}\gamma/p$ $10^{9}p/\bar{p}$

10⁹⁰ particles (γ ,....) in Universe $\rightarrow \sim 10^{80}$ p

 \boldsymbol{p}

 \bar{p}

Violates B, L

X

3 conditions to create baryon asymmetry *

- Violation of B # conservation $|N_p N_{\bar{p}}| \neq 0$
- Violation of CP symmetry CP $|p > \rightarrow |\bar{p} >$
- Deviation of strict thermal equilibrium

One possibility: new interaction \rightarrow with lepto-quarks X ...proton should be unstable...T_{1/2} >10³⁴ y

*A. Sacharov (1967), S. Dimopoulos, L, Susskind (1980)

PROBLEMS WITH BIG BANG THEORY

1) Flatness problem

any deviation from $\Omega_{\rm tot}$ = 1 grows $|\Omega_{tot} - 1| \propto t^{1/2}$, $t^{2/3}$

 $t_{BBN} \sim 1 \text{ sec} \rightarrow |\Omega_{tot} - 1| < 10^{-18}$ $t_{ew} \sim 10^{-12} \text{ sec} \rightarrow |\Omega_{tot} - 1| < 10^{-30}$

2) Horizon problem

how to explain the isotropy of the CMB

3) Relic particle problem

- GUT theories predict large abundance of heavy particles, e.g. magnetic monopoles
- $M_{mm} = O (10^{16} \text{ GeV}) \rightarrow \text{non- rel. during rad. era}$
 - ...would have dominated radiation era
- 4) Large scale structure problem

how to explain the observed large scale structure in the galaxy distributions?

CMB-LSS BB vy Causally connected

today

INFLATION

A. Guth 1981: Inflationary expansion of U. at GUT scale

- All curvature smoothed out
- Relic particles diluted
- Quantum fluctuations → seeds of later large scale structure

Scalar field creates a "cosm. constant"

exponential growth of space

 ~ 60 e-foldings w/in 10⁻³⁴ sec

Phase transition (lat. Heat) creates

Like super-cooled liquid

0

particles