

COSMOLOGY & DARK MATTER

Part III

Viktor Zacek, Université de Montréal

TRIUMF July 2013

Lecture III

- Dark Matter and Large Scale Structure
- Dark Matter candidates
- Neutralino interactions with Matter
- Status of indirect search experiments
- Status of direct search experiments
- Future directions

DM & DEVELOPMENT OF STRUCTURE

- BB creates DM + ord. Matter
- DM decouples early
- Clumps
- Ordinary matter flows in
- Galaxies form
- Galaxies trace DM distribution

Moon

DO GALAXIES TRACE THE DM DISTRIBUTION ?

COSMOS EVOLUTION SURVEY:

(Jan. 2007)

First large scale 3D reconstruction of DM distribution
Hubble Space Telescope: largest picture mosaic ever 1.4° x 1.4°
Distance by red shifts: ESO VLT (Chile), Magellan (Chile), Subaru (Hawaii), CHT (Hawaii)
--X-ray mapping of gas in galaxies: XMM Newton
0.5 M background galaxies for DM reconstruction by gravitational lensing

COSMOS

DM > six times more abundant than ordinary matter Growing clumpiness of DM & ordinary matter flowing in

3 slices of red shift

5 By ago

3.5 By ago

Growing clumpiness of DM & ordinary matter flowing in

6.5 By ago

100 M Ly

WHAT IS THE STRUCTURE AT LARGE SCALE

SLOAN DIGITAL SKY SURVEY

- SDSS I completed Jan. 2005 0.6 M galaxies
- SDSS II until 2008 1.6 M galaxies
- maps cube of 6x10⁹ Ly sides

WHAT KIND OF MATTER CAN EXPLAIN LSS?

Baryonic matter @T=225s (BBN) cannot clump to form voids (200MLy) filaments & superclusters

...structures thinned out by Hubble expansion

Assume DM decouples earlier @ T < T_{BBN} and interacts weakly • longer time to develop structure • clumps earlier • baryons fall into troughs

3 problems solved:

galaxy formation

Large scale structure

Dark Matter

LARGE SCALE STRUCTURE & DM SPEED

COLD DM

non relativistic
extremely weak interaction w. baryonic matter
clump on small scale
bottom-up model
galax. in correct mass range (10⁻³ < MW < 10⁴)

alativistic

HOT DM

- e.g. massive //s
- before decoupling structures washed out
- superclusters form first

uled out by WMAP, Planck)

cdm-hdm1-princeton.mpeg

The larger the scale we average the more uniform becomes the Universe!

CONCORDANCE MODEL

 $\Omega_{tot} = 1$ $\Omega_{\Lambda} = 0.7$ $\Omega_{b} = 0.05$ $\Omega_{dm} = 0.26$ $H_{0} = 0.67 \text{ km/s/Mps}$ $T_{0} = 13.8 \text{ Gyr}$

BUT WHAT IS DARK MATTER ?

Where do we find it and how much of Ω_m ?

- DM in clusters of galaxies
- DM from galaxies and their rotation curves
- Compare to luminous matter, stars
- DM inferred from x-ray clouds around clusters of galaxies
- DM from large scale flows of galaxies
- DM by gravitational lensing

THE DARK MATTER PROBLEM - FIRST INDICATIONS

Fritz Zwicky, 1937

 Studies kinetic energies of 8 galaxies of the Coma Cluster

finds velocities are much larger than expected

 apparently Coma cluster contains 200 x more mass than is visible in form of galaxies

The "hidden mass" problem becomes a "key problem" of modern cosmology

DARK MATTER & GALACTIC ROTATION CURVES

 $M_{\rm halo} > 10 \times (M_{\rm lum} + M_{\rm gas})$

DARK MATTER IN OUR MILKY WAY

 $M(r) = \frac{v_{rot}^2 r}{G}$

2MASS two Micron All Sky Survey

...only 5-10% of matter visible!

 $\rho_{DM} \sim 0.3 \ m_p/cm^3$

Virgo Cluster pulled towards an invisible "Great Attractor"

VIRGOHI21: A GALAXY OF DARK MATTER ! (50 M Ly)

Visible spectrum

RF-hydrogen emission

1000 x more Dark Matter than hydrogen! $M \sim 0.1 \ M_{MW}$

(Feb. 2005)

DARK MATTER AROUND OTHER GALAXIES

CHANDRA X-RAY

DSS OPTICAL

Abell 2029 (~ 100 Mpc)

- a cluster of thousands of galaxies
- surrounded by gigantic clouds of hot gas

■ T~ 10⁶ K

DARK MATTER AT AT LARGER SCALES

Gravitational lensing

HST CL0024+1654

_{lark}>50 M

• grav. potential φ causes time delay of light (Shapiro) \rightarrow refractive index n $n = 1 - \varphi$

$$\Delta \Phi = -\int \nabla_{\perp} n dl = -\int \nabla_{\perp} \varphi dl$$

 provides evidence of large masses
 between source and MW

recently 3D reconstruction of clusters of Dark Matter

THE BULLET CLUSTER IE0657-56 (~ 1 Gpc)

Optical Dark Matter X-ray Gas

High velocity merger of clusters of galaxies 4500 km/s

 $M_{dark} > 49 M_{vis}$

M. Markewitch et al: HST, Magellan, Chandra (August 2006)

CURRENT EVIDENCE FOR Ω_m

Rotation curves

Galaxy kinematics

$\Omega_{\rm m} \sim 0.2-0.3 \rightarrow \text{Coinc. Model!}$

Lensing

CHANDRA X-RAY

DSS OPTICAL

...BUT WHAT PARTICLE IS A GOOD CANDIDATE?

Reduction due to Hubble expansion

DM self annihilation

Boltzmann

 $\frac{dn_x}{dt} = -3Hn_x - n_x^2 \langle \sigma v \rangle (x\overline{x} \to ordinary \ matter) + n_{ord}^2 \langle \sigma v \rangle (ordinary \ matter \to x\overline{x})$

Particle production

- in equilibrium: creation = annihilation

- ordinary particles stay longer in equilibrium

PARTICLE ABUNDANCE IN THE EARLY UNIVERSE

kT

$$n_x^{eq} \propto (mT)^{3/2} e^{-m}$$

After freeze out:

 $\Omega_x \approx \frac{3 \cdot 10^{-27} \, cm^2 \, \text{sec}^{-1}}{\langle \sigma v \rangle h^2}$

In order to get: $0.17 < \Omega_x < 0.25$

...need stable particle which annihilates with electro-weak scale cross-section

- Strategy:
- chose a particle
- know all the annihilation channels!
- calculate $\Omega_{\rm x}$
- compare to Concordance Model

THE NEUTRALINO: A CDM CANDIDATE

- χ_1 can be lightest stable super symmetric particle LSP
- Majorana fermion
- Interaction with matter electro-weak
- can provide closure density
- relic population from early BB

 $\chi_1 = N_{11}\tilde{\gamma} + N_{12}\tilde{Z} + N_{13}\tilde{H}_1^0 + N_{14}\tilde{H}_2^0$ "photino" "zino" higgsino" "higgsino"

45 GeV < Mχ_< 600 Gev - 7 TeV

Accelelerators

SUSY structure

cosmology

NEUTRALINO INTERACTION CROSS SECTIONS

 $\sigma_A = 4G_F^2 \left(\frac{M_{\chi}M_A}{M_{\chi} + M_{\chi}}\right)^2 C_A F(q^2)$

Spin-dependent

Spin-independent

General form of cross sections:

Enhancement factor

 C_A^{SI} : Spin independent – coherent interaction ∞A^2 C_A^{SD} : Spin dependent interaction $\infty < S_{p,n} >^2$ $F(q^2)$: nucl. form facor \rightarrow important for large q^2 and large A

SPIN-INDEPENDENT ENHANCEMENT

SD or coherent interaction described by scalar coupling to nucleons

$$C_{A}^{SI} = \frac{1}{4\pi} \Big[Z f_{p} + (A - Z) f_{n} \Big]^{2}$$

Coupling to n, p

- $f_p = f_n$ coherent interaction $\propto A^2$
- $f_{p,n}$ can also interfere destructively!

To compare theory with experiments and different experiments \rightarrow normalization to nucleon X- section $\sigma_{\rm p}$

$$\sigma_p^{SI} = \frac{1}{A^2} \left(\frac{\mu_p}{\mu_A} \right) \sigma_A^{SI}$$

 $\mu_{A,p}$: χ -nucleus, p - χ reduced mass

(assuming $q^2 \approx 0$ and $f_p = f_n$)

SPIN- DEPENDENT ENHANCEMENT

Coupling constants

Averaged *p, n*- spin

D.R. Tovey et al; PLB 88(2000)17

Total spin

 $C_A^{SD} \propto \lambda^2 J(J+1)$

¹⁹F most favorable! (PICASSO, SIMPLE, KIMS, COUPP)

Normalization of σ_A to $\sigma_{p,n}$

$$\sigma_{p,n}^{SD} = \frac{3}{4} \frac{J}{J+1} \left(\frac{\mu_{p,n}}{\mu_A}\right)^2 \frac{1}{\left\langle S_{p,n} \right\rangle^2} \sigma_A^{SD}$$

Isotope	Spin	Unpaired	λ^2
$^{1}\mathrm{H}$	1/2	р	1
⁷ Li	3/2	P	0.11
¹⁹ F	1/2	P	0.863
²³ Na	3/2	P	0.011
²⁹ Si	1/2	n	0.084
⁷³ Ge	9/2	n	0.0026
¹²⁷ I	5/2	P	0.0026
¹³¹ Xe	3/2	n	0.0147

WHAT CAN WE DO WITH IT?

Searches for DM Particles

Production in situ at accelerators

Indirect detection via DM annihilation in Sun, Earth, Galaxy v, γ -rays, anti-protons , positrons

Direct detection in u/g laboratories

NEUTRALINO ANNIHILATION IN THE HALO

- Antimatter from neutralino annihilation in the halo
- Energy spectrum depends on annihilation mode

PAMELA (June '06) ! AMS-2013 ! FERMI

e⁺-spectrum depends on diffusion constant, energy loss, halo structure...

D. Hooper, Dark Matter 2006, Maruna del Rey

FERMI (LAT) LARGE AREA TELESCOPE

- HE γ-ray spectrometer
- Launched in 2008

- Nov. 2012 spike at 130 GeV -> gal. center
- Reanalysis: CR induced γ's in earth atm. ?
- Effect seems to fade away?

a payload for Antimatter Matter Exploration and Light-nuclei Astrophysics

Study anti protons, positrons and electrons $\Phi_{e^+} \to E_{e^+}^3 (\text{GeV}^2 \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1})$ 10^{-4} Search for anti nuclei, esp. Anti-He ANTICOINCIDENCI (CARD) 10^{-5} TOF (S2) (CAT) WIMP annihilation in the halo 10^{-6} SPECTROMETER Study CR propagation models ANTICOINCIDENCE (CAS) 10^{-7} 20 10 TOF (S3) CALORIMETER background model \$4 NEUTRON DETECTOR Positron fraction Explanation: - Modification of acceleration & propagation models for CR - DM annihilation - Pulsars PAMELA 0.01 10

annihilations to bb

600

500

300

100 200

100

50

(GeV)

50

E_+

 10^{-3}

e⁺-spectrum depends on diffusion constant, energy loss, halo structure...

Energy (GeV)

ALPHA MAGNETIC SPECTROMETER (AMS)

Search for antimatter Since 2012 installed on ISS E, m. spectrometer 7.5t Supraconducting magnet 1m Ø Range 500 keV – 1 TeV

April 4, 2013: excess of e⁺ announced Dark Matter? Maybe, but also e⁺ pulsars

- Seasonal variation of WIMP speeds
- Modulation of recoil spectrum
- Annual rate modulation $\approx 5-7\%$
- Day- night variation $\approx 7 17\%$

A. Drukier, K. Freese, Spergel PRD 33(86)3495

DIRECT DETECTION OF CDM PARTICLES

via scattering off detector nuclei & recoil detection

 χ density in halo

Interaction rate:

 $R = N_T \bullet v_x \bullet \rho_x \bullet \sigma$

target nuclei

av. velocity

- χ in self gravitating halo
- Maxwellian v-distr.
- ρ ~ R⁻²
- ρ_{sun} ~ 0.3 GeV / cm³
- annual variation!
- extragalactic streams?

RECOIL SPECTRA & RATES

[eV]

Extragalactic stream

$$\langle E_r \rangle \approx 2 \cdot \left(\frac{M_N}{1GeV}\right) \cdot \left[\frac{M_{\chi}}{M_{\chi} + M_N}\right]^2 [k]$$

Average recoil energy: keV range !

RATES & LIMITS

GENERAL STRATEGY FOR DARK MATTER SEARCH

Requirements

- Very low, threshold \rightarrow keV
- Very small intrinsic and induced background \rightarrow <0.1 cts/kg/d
- Located in underground laboratories in radio-pure environment
- Screened from neutrons
- With capability to discriminate signal from background
- Superb stability and control of systematics
- Large detector mass \rightarrow 100kg

-Signatures

- Annual modulation → statistics
- Depenance on target A (SI) or target spin (SD)
- Directionality → statistics, low pressure
- Absence of multiple events \rightarrow detector arrays

COSMIC RAY INDUCED NEUTRONS

Neutron- production by

- μ spallation in det. material
- μ spallation in det. shielding
- μ spallation in rock

SOUDAN: 0.05 n / kg-d

SNOLAB: 0.2 n / ton-y

SUMMARY DIRECT DETECTION ACTIVITIES

Experiment	Detector	Staus	Location	Collaboration
DAMA/LIBRA	Nal	running	Gran Sasso	Italy, China
ANAIS	Nal	constructing	Canfranc	Spain
KIMS	Csl	running	Korea	Korea
HDMS	GE	running	Gran Sasso	Germay, Russia
Dama -LXe	LXe	running	Gran Sasso	Italy, China
Zeplin II	LXe	terminated	Boulby	PT, UK, RU, US
Zeplin III	LXe	terminated	Boulby	PT, UK, RU, US
XENON 10	LXe	running	Gran Sasso	DE, IT, PT, US
LUX	LXe	running		US
XMASS	LXe	running	Kamioka	Japan
WARP	LAr	running	Gran Sasso	Italy, US
ArDM	LAr	R&D	Canfranc	CH. ES, PO
DEAP	LAr	commissioning	SNOLAB	Canada, US
CLEAN	LNe	commissioning	SNOLAB?	US, Canada
Rosebud	Bolometer/scintill.	R&D	Canfranc	Spain, France
EDELWEISS	Bolometer	running	Frejus	F, GE, RU
CRESST	Bolometer	running	Gran Sasso	DE, UK, IT, RO
CDMS	Bolometer	running	Soudan	US
SIMPLE	Superheated liquids	running	Rustrel	PT, F, US
PICASSO	Superheated liquids	running + R&D	SNOLAB	CA, US, CZ
COUPP	Superheated liquids	running	Fermilab	US
Drift	Xe gas	R&D	Boulby	UK, US
MIMAC	³ He gas	R&D		France

SCINTILLATOR EXPERIMENTS

Principle:

- crystals (NaI, CsI), Liquids (Xe, Ar, Ne, CaF₂(Eu)) emit light if hit ∞ radiation
- light collected by photo multipliers (ϵ ~ 15%) or photo-diodes
- ΔE / photon ~ 15 eV
- light gain ~ 2-8 phe/keV

Background rejection:

• different pulse shape (time constant) for nuclear recoil or e, gamma induced events

Experiments: DAMA, NAIAD, ANAIS, KIMS, DEAP...

DAMA / LIBRA Nal (Gran Sasso)

- 250 kg of Nal crystals
- + 13 annual cycles show a modulation at 8.9σ
- period T=1.00 \pm 0.01 y; A = 0.0195 \pm 0.003 cts/kg/d/keV
- modulation at low energies 2-6 keV
- total exposure 1.17 ton y
- Signal: $M\chi \sim 10$ 50 GeV/c^{2;} $\sigma_{SI} \sim 10^{-6}$ pb

reese et al. PRD88	June ///
WIMP Wind	V
	1 aug
v -220km/s	Suit
- Currente	
Cygnus	50° / guidene plane
CHINES IN STREET	
	111.
	December
	December
	V
	http://www.hop.chof.or

R. Bernabei et al.; PLP 24(1998) 195, R. Cerulli, IDM2012

CRYOGENIC EXPERIMENTS

Principle:

- Crystals (Al₂O₃, Ge, Si, TeO₂ at sev. mK
- Particle interaction produces phonons (heat)
- Energy per phonon ~ meV \rightarrow FWHM 4.5 eV @ 6 keV_x
- Temperature rise measured by semi/superconducting thermometers

Background rejection:

- Ionization / scintill. light yield depends on recoiling particle
- Compare phonon with ion. / scintill. signal

Experiments: CDMS, CRESST, ROSEBUD, CUORE, EDELWEISS,...

CRESST II (Gran Sasso)

- 300 g crystals of CaWO₄
- Transition edge sensors @10 mK
- Phonon (energy) + light signal
- 3 different targets $\rightarrow M_W \sim$ 12, 25, 50 GeV/c²

C. Strandhagen, IDM 2012 ; arXiv 1109.07020:

- 8 Modules \rightarrow 730 kgd
- 67 accepted events
- Two solutions:

M1: 25.3 GeV/c² σ_{sl} =1.6x10⁻⁶ pb @ 4.7 σ

M2: 11.6 GeV/c² σ_{sl} =3.7x10⁻⁵ pb @ 4.7 σ

Light WIMP or Background?

2012: M1 < 2.5σ M2 < 1.9σ

CDMS II (SOUDAN)

- 250 g Ge, Si crystals at 50 mK
- arranged by 6 modules/tower
- 5 towers operated since Oct. '06
- total mass 4.5 kg Ge, 1.1 kg Si
- ionisation + heat + risetime
- γ rejection > 99.9998 %, 99.75 for β's

CDMS II SI

- April 2013 \rightarrow 140 kgd
 - 3 ev. Backg. 0.7 ev
 - + $\sigma_{SI} \sim 2 \ 10^{-5} \, pb$, $M_W = 8.5 \ GeV/c^2$

superCDMS (SNOLAB)

- 640 g detector modules
- 25 kg active mass (2012)
- Larger cryogenic system
- x 40 backg. Rejection
- Goal $\rightarrow \sigma_{SI} \sim 10^{\text{-9}}\,\text{pb}$

GE-IONISATION EXPERIMENTS

Principle:

- High purity Ge- crystals (LN₂ Temperature).
- $\Delta E / e^2$ -ion pair: 3 eV
- Resolution: 400 eV @ 10 keV

Background rejection:

- high intrinsic purity
- anti-coincidence veto

Phys. Lett. B, 195 (1987)

LIMITS ON COLD DARK MATTER CANDIDATES FROM AN ULTRALOW BACKGROUND GERMANIUM SPECTROMETER

S.P. AHLEN ^a, F.T. AVIGNONE III ^b, R.L. BRODZINSKI ^c, A.K. DRUKIER ^{d,e}, G. GELMINI ^{f,g,1} and D.N. SPERGEL ^{d,h}

Experiments: IGEX, COSME, CoGENT, NeCaPSI...

COGENT (SOUDAN-LAB)

- Single 440 g HPGe crystal
- Point contact electrode: $C\downarrow$ low noise
- Optimized for low E, low backg.
- Threshold @ 0.4 keV_{ee}

M_w = 7 GeV/c² spectrum!

TAUP 2011:

- DAMA like modulation
- DAMA like $\sigma \sim 7x10^{-5} \, pb$...in 2011
- CRESST?

R. Gaitskell, DM2012,; arXiv: 1106.0650v3

SUPERHEATED LIQUIDS

Principle:

- Bubble chamber technique
- $E_{th} \sim 1$ keV for nuclear recoils P_{ext}
- full efficiency for nucl. Recoils

Background rejection:

- dE/dx_{Bragg} \rightarrow discriminates recoil nuclei from γ , e, μ !
- gamma rejection better than 10^{10} at $E_{rec} = 5 \text{ keV}$

Experiments:

• PICASSO, SIMPLE, COUPP...

- 150 μ m droplets of C₄F₁₀ dispersed in polymerised gel
- Droplets superheated at ambient T & P (T_b = 1.7 °C)
- Radiation triggers phase transition
- Operating temperature determines energy threshold
- insensitive to γ background
- Acoustic a / recoil discrimination!
- Calibrated down to 0.8 keV

IO « golden detectors »; 140 kgd exposure

• ¹⁹F & low threshold (1.7 keV) \rightarrow improved sensitivity for M_w < 15 GeV/c²

COUPP (SNOLAB)

- 2 kg CF₃I Bubble chamber
- can explore SD and SI interactions
- acoustic trigger & events optically recorded
- $\sigma_{SD} < 5 \ 10^{-2} \text{ pb}, \ \sigma_{SID} < 5 \ 10^{-6} \text{ pb},$

Ongoing

- 30 L bubble chamber (60 kg) @ SNOLAB
- water Cerenkov veto

Bckg. In liquid mainly Rn decays

Spatial distribution of bubbles (~1 mm resol.)

COUPP60 (SNOLAB)

• Data taking at SNOLAB started June 2013 exp. sensitivity: $\sigma_{SD} < 10^{-5}$ pb, $\sigma_{SID} < 5 \ 10^{-9}$ pb,

$\begin{array}{l} \mbox{PICASSO} + \mbox{COUPP} = \mbox{PICO} \\ \mbox{500 kg } C_3 F_8 \ \rightarrow 2015 \\ \mbox{exp. sensitivity: } \sigma_{SD} < 10^{-7} \mbox{ pb } \sigma_{SID} < 10^{-10} \mbox{ pb}, \end{array}$

LIQUID NOBLE GASES

Principle

- Single phase: LXe,LNe, LAr \rightarrow scintillation
- Dual phase liquid /gas \rightarrow scintillation + ionisation

Background rejection:

- pulse shape discrimination / single phase
- Xe^{*} +Xe recombination \rightarrow UV γ (S1) 10:1 nuclear : electron
- double/phase: part of e⁻ drifted into gas phase
- sec. Ion. in strong field (10kV/cm) \rightarrow delayed scint. γ 's (S2)

Advantages:

- Iarge mass
- Re-purification
- Good particle ID

Gas	Single phase	Double phase
Xenon	ZEPLIN I, XMASS	ZEPLIN, XENON, LUX
Argon	DEAP, CLEAN	WARP/ DarkSide, ArDM
Neon	CLEAN	SIGN

DEAP (SNOLAB)

- Detects scintillation light in LAr at 85K
- Light yield $4x10^4 \gamma$'s/MeV threshold ~ 10 keV
- excited dimers of Ar_{2}^{*} in singlet/ triplet states
- different lifetimes and S/T fraction depending on ionisation
- \rightarrow pulse shape discrimination
- 7 kg of Lar \rightarrow SNOLAB early '07
- Goal $\rightarrow \sigma_{sl} \sim 10^{-8} \text{ pb}$ after 1 year

Unshielded tests at Queen's

Future: **DEAP 3** 1 tonne Lar

- 5m diameter tank
- 500 PMT's

XENON 100 (Gran Sasso)

- 30 cm drift x 30 cm \varnothing TPC
- 162 kg Lxe (A=131)
- 241 1" PMT
- LXe veto around
- Kr: 19 ppt

2012 Results :

- Fid. Vol. 34 kg 224 days
- Define scaling region (calib.)
- 2 events observed after unbldg.
- •1 \pm 0.2 expected
- no events below threshold

Upper limit: 2x10⁻⁹ pb for 55 GeV/c² (90% C.L.)

J. Malgarejo, IDM 2012

CURRENT STATUS SPIN-INDEPENDENT SECTOR

ONE CLAIM FOR DISCOVERY: DAMA

CAN THESE RESULTS BE MADE COMPATIBLE

Proposed sources for DAMA's annual modulation:

- Ambient temperature variation
- µ-flux depends on atm. temperature/pressure
- Spallation neutrons from muons in rock
- Rn diffusion from rocks may be varying with time

(all explained away by DAMA)

Detector Effects?

- Quenching & channeling
- Threshold effects (Collar)

Astrophysical effects?

- different halo compositions
- v_{χ} and ρ_{χ} different than expected
- diff. exp. thresholds

Due to nature of DM?

- Different experiments diff. sensitivities to candidates
- Isospin violating DM: e.g if $f_p = -f_n \rightarrow no Xe effect!$
- ????

DIRECT DETECTION & LHC \rightarrow MONO-JETS

Direct searches (non-relativistic)

LHC searches (highly relativisic)

- Tagging by j / γ + E^{miss}
- Search for excess
- Suppose contact interaction
- Relate to direct $\sigma_{\text{SI}},\,_{\text{SD}}$
 - Impressive limits....

...works only well for mediator mass > few TeV

DIRECT DETECTION & LHC \rightarrow SUSY SEARCH

- cMSSM: m₀, m_{1/2}, A₀, tan(β), sign(μ)
- Apply contraints (closure density...)
- + LHC (non)-observational results

- LHC exclusion limits cut deep into cMSSM parameter space
- Add Higgs mass constraints...

 M_W > 500 GeV/c² + small x-sections!

BUT:

- SUSY parameter space large - other models...UED etc

C. Strege, Dark Attack 2012

THE FUTURE OF DIRECT DM - SEARCHES

Trend towards a few very large experiments....

LUX 350 kg Xe

ArDM 850 kg

10 m **XENON 1t**

EURECA 0.1 -1t

DEAP 3.6 t Ar

PICO 0.5 – 1t (PICASSO-COUPP)

DARWIN 20t Xe / Ar

Summary

- Concordance Model : $\Omega_{tot} = 1$, $\Omega_{dm} = 0.3$, $\Omega_{b} = 0.05$, $\Omega_{\Lambda} = 0.7$
- Astronomical observations + WMAP strongly support CDM
- CDM responsible for 85% of gravitationally traceable matter
- Direct, indirect and accelerator searches on the way to explore theoretically interesting X- section ranges
- 10⁻¹⁰pb (SI) and 10⁻⁶pb (SD) in reach within next 7-8 years
- Tantalising results in low Wimp mass region → tension between experiments
- Increasing synergy and complementarity between accelerator, direct and indirect searches